Abstract

Markov processes are widely used models for investigating kinetic networks. Here, we collate and present a variety of results pertaining to kinetic network models in a unified framework. The aim is to lay out explicit links between several important quantities commonly studied in the field, including mean first passage times (MFPTs), correlation functions, and the Kemeny constant. We provide new insights into (i) a simple physical interpretation of the Kemeny constant, (ii) a relationship to infer equilibrium distributions and rate matrices from measurements of MFPTs, and (iii) a protocol to reduce the dimensionality of kinetic networks based on specific requirements that the MFPTs in the coarse-grained system should satisfy. We prove that this protocol coincides with the one proposed by Hummer and Szabo [J. Phys. Chem. B 119, 9029 (2014)], and it leads to a variational principle for the Kemeny constant. Finally, we introduce a modification of this protocol, which preserves the Kemeny constant. Our work underpinning the theoretical aspects of kinetic networks will be useful in applications including milestoning and path sampling algorithms in molecular simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.