Abstract

We discuss c≤3 topological Landau-Ginzburg models. In particular we give the potential for the three exceptional models E6,7,8 in the constant metric coordinates of coupling constant space and derive the generating function F for correlation functions. For the c=3 torus cases with one marginal deformation and relevant perturbations, we derive and solve the differential equation resulting from flatness of coupling constant space. We perform the transformation to constant metric coordinates and calculate the generating function F. Comparing the three-point correlation functions with those of orbifold superconformal field theory, we find agreement. We finally demonstrate that the differential equations derived from flatness of coupling constant space are the same as the ones satisfied by the periods of the tori.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.