Abstract

We present a simple, linear, partial-differential equation for the density-density correlation function in a glass-forming system. The equation is written down on the basis of fundamental and general considerations of linearity, symmetry, stability, thermodynamic irreversibility and consistency with the equation of continuity (i.e. , conservation of matter). The dynamical properties of the solutions show a change in behavior characteristic of the liquid-glass transition as a function of one of the parameters (temperature). The equation can be shown to lead to the simplest mode-coupling theory of glasses and provides a partial justification of this simplest theory. It provides also a method for calculating the space dependence of the correlation functions not available otherwise. The results suggest certain differences in behavior between glassy solids and glass-forming liquids which may be accessible to experiment. A brief discussion is presented of how the method can be applied to other systems such as sandpiles and vortex glasses in type II superconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call