Abstract

It is well known that perturbative solutions of the Langevin equation can be used to calculate correlation functions in stochastic quantization. However, this work is challenging due to the absence of generalized rules. In this paper, we address this difficulty by studying correlation functions up to certain orders for self-interacting scalar fields. Through the perturbative approach, we establish stochastic Feynman rules applicable to both finite and large fictitious times. Within this process, we introduce a fictitious-time ordering diagram, which serves as a keystone for finding all possible fictitious-time orderings and directly writing down an exact contribution for a given stochastic diagram with its fixed fictitious-time ordering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call