Abstract

We consider the correlator <W_n O(x)> of a light-like polygonal Wilson loop with n cusps with a local operator (like the dilaton or the chiral primary scalar) in planar N =4 super Yang-Mills theory. As a consequence of conformal symmetry, the main part of such correlator is a function F of 3n-11 conformal ratios. The first non-trivial case is n=4 when F depends on just one conformal ratio \zeta. This makes the corresponding correlator one of the simplest non-trivial observables that one would like to compute for generic values of the `t Hooft coupling \lambda. We compute F(\zeta,\lambda) at leading order in both the strong coupling regime (using semiclassical AdS5 x S5 string theory) and the weak coupling regime (using perturbative gauge theory). Some results are also obtained for polygonal Wilson loops with more than four edges. Furthermore, we also discuss a connection to the relation between a correlator of local operators at null-separated positions and cusped Wilson loop suggested in arXiv:1007.3243.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.