Abstract

The effect of heated length on critical heat flux (CHF) in thin rectangular channels under atmospheric pressure has been studied. CHF in small channels has been widely studied in the last decades but most of the studies are based on flow in round tubes and number of studies focused on rectangular channels is relatively small. Although basic triggering mechanisms, which lead to CHF in thin rectangular channels, are similar to that of tubes, applicability of thermal hydraulic correlations developed for tubes to rectangular channels are questionable since heat transfer in rectangular channels are affected by the existence of nonheated walls and the noncircular geometry of channel circumference. Several studies of CHF in thin rectangular channels have been reported in relation to thermal hydraulic design of research reactors and neutron source targets and correlations have been proposed, but the studies mostly focus on geometrical conditions of the application of interest and therefore effect of channel parameters exceeding their interest is not fully understood. In his study, CHF data for thin rectangular channels have been collected from previous studies and the effect of heated length on CHF was examined. Existing correlations were verified with data with positive quality outlet flow but none of the correlations successfully reproduced the data for a wide range of heated lengths. A new CHF correlation for quality region applicable to a wide range of heated lengths has been developed based on the collected data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call