Abstract
Quantum chemical calculations on some typical elements of secondary structure in peptides and proteins (β sheets, β and γ turns) at the Hartree−Fock and MP2 correlation energy levels show considerable differences in the stability orders of alternative structures. The correlation energy data indicate an overestimation of hydrogen-bonded structures. Thus, correlation energy data may be misleading when comparing peptide structures of different type, as for instance, conformations with and without hydrogen bonds or with a different number of hydrogen bonds. This effect is corrected at the Gibbs free energy level when including thermal energy and entropy contributions. Considerable compensation of correlation energy and entropy contributions is mainly responsible for the relatively good correspondence of Hartree−Fock energy differences obtained with more extended basis sets and the free enthalpy data at the correlation energy level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.