Abstract
Conditional-probability density functional theory (CP-DFT) is a formally exact method for finding correlation energies from Kohn-Sham DFT without evaluating an explicit energy functional. We present details on how to generate accurate exchange-correlation energies for the ground-state uniform gas. We also use the exchange hole in a CP antiparallel spin calculation to extract the high-density limit. We give a highly accurate analytic solution to the Thomas-Fermi model for this problem, showing its performance relative to Kohn-Sham and it may be useful at high temperatures. We explore several approximations to the CP potential. Results are compared to accurate parametrizations for both exchange-correlation energies and holes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.