Abstract

Abstract In this study, density functional full-potential linearized augmented-plane wave (FP-LAPW) calculations have been conducted to investigate the structural, electronic and magnetic properties of the quaternary full Heusler compounds Co2VGa1−xSix (x = 0, 0.25, 0.5, 0.75 and 1). We adopted the generalized gradient approximation (GGA) method to estimate the exchange correlation potential and the GGA + U (i.e. Hubbard correction) calculations in accurately characterizing the correlation effects. The lattice parameter a0, bulk modulus B0 and magnetic moment M at the equilibrium state were found to be in good agreement with the experimental data. The calculated density of states of the systems confirm the metallic property for the concentrations x = 0; 0.25 and 0.5, whereas the compositions x = 0.75 and 1.0 exhibit half-metallic nature. The GGA + U gave higher value than that obtained by GGA for the calculate magnetic moments. This work highlights clearly the role of the correlated electrons processing for an accurate description of these compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.