Abstract

Topological phases of quantum matter defy characterization by conventional order parameters but can exhibit a quantized electromagnetic response and/or protected surface states. We examine such phenomena in a model for three-dimensional correlated complex oxides, the pyrochlore iridates. The model realizes interacting topological insulators, with and without time-reversal symmetry, and topological Weyl semimetals. We use cellular dynamical mean-field theory, a method that incorporates quantum many-body effects and allows us to evaluate the magnetoelectric topological response coefficient in correlated systems. This invariant is used to unravel the presence of an interacting axion insulator absent within a simple mean-field study. We corroborate our bulk results by studying the evolution of the topological boundary states in the presence of interactions. Consequences for experiments and for the search for correlated materials with symmetry-protected topological order are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.