Abstract

Correlated values of the isomerization energy and barrier for the HNC→HCN reaction are obtained from many-body perturbation theory, including the effects of quadruple excitations. Extended basis sets of better-than-triple-zeta plus double-polarization quality are used, as well as basis sets including counterpoise and bond-centered orbitals. The best of these basis sets is sufficient to account for 84% of the valence correlation energy of HCN. These studies predict an isomerization energy for the HNC→HCN rearrangement to be −15±2 kcal/mole, in disagreement with a recent experimental value of −10.3±1. kcal/mole. Correlated isomerization energies of LiCN→LiNC and BCN→BNC are obtained in bases of double-zeta plus polarization quality. In all cases, correlation stabilizes the cyanide isomer more than the isocyanide. Trends in the series R–NC⇄RCN for R=H, Li, and B are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.