Abstract

We study the effects of many-body correlations in trapped ultracold atomic Bose gases. We calculate the ground state of the gas using a ground-state auxiliary-field quantum Monte Carlo (QMC) method [Phys. Rev. E 70, 056702 (2004)]. We examine the properties of the gas, such as the energetics, condensate fraction, real-space density, and momentum distribution, as a function of the number of particles and the scattering length. We find that the mean-field Gross-Pitaevskii (GP) approach gives qualitatively incorrect result of the kinetic energy as a function of the scattering length. We present detailed QMC data for the various quantities, and discuss the behavior of GP, modified GP, and the Bogoliubov method under a local density approximation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.