Abstract

Scanning tunneling microscopy (STM) and spectroscopy probe the local density of states of single molecules electrically insulated from the substrate. The experimental images, although usually interpreted in terms of single-particle molecular orbitals, are associated with quasiparticle wave functions dressed by the whole electron-electron interaction. Here we propose an ab initio approach based on quantum Monte Carlo to calculate the quasiparticle wave functions of molecules. Through the comparison between Monte Carlo wave functions and their uncorrelated Hartree-Fock counterparts we visualize the electronic correlation embedded in the simulated STM images, highlighting the many-body features that might be observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.