Abstract
Data-driven landslide susceptibility models formally integrate spatial landslide information with explanatory environmental variables that describe predisposing factors of slope instability. Well-performing models are commonly utilized to identify landslide-prone terrain or to understand the causes of slope instability. In most cases, however, the available landslide data is affected by spatial biases (e.g. underrepresentation of landslides far from infrastructure or in forests) and does therefore not perfectly represent the spatial distribution of past slope instabilities. Literature shows that implications of such data flaws are frequently ignored.This study was built upon landslide information that systematically relates to damage-causing and infrastructure-threatening events in South Tyrol, Italy (7400 km2). The created models represent three conceptually different strategies to deal with biased landslide information. The aims were to demonstrate why an inference of geomorphic causation from apparently well-performing models is invalid under common landslide data bias conditions (Model 1), to test a novel bias-adjustment approach (Model 2) and to exploit the underlying data bias to model areas likely affected by potentially damaging landslides (Model 3; intervention index), instead of landslide susceptibility. The study offers a novel perspective on how biases in landslide data can be considered within data-driven models by focusing not only on the process under investigation (landsliding), but also on the circumstances that led to the registration of landslide information (data collection effects). The results were evaluated in terms of statistical relationships, variable importance, predictive performance, and geomorphic plausibility.The results revealed that none of the models reflected landslide susceptibility. Despite partly high predictive performances, the models were unable to create geomorphically plausible spatial predictions. The impact-oriented intervention index, however, enabled to identify damage-causing landslides with high accuracy. We conclude that the frequent practice of inferring geomorphic causation from well-performing models without accounting for data limitations is invalid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.