Abstract

A variety of new measures of quantum Rényi mutual information and quantum Rényi conditional entropy have recently been proposed, and some of their mathematical properties explored. Here, we show that the Rényi mutual information attains operational meaning in the context of composite hypothesis testing, when the null hypothesis is a fixed bipartite state and the alternative hypothesis consists of all product states that share one marginal with the null hypothesis. This hypothesis testing problem occurs naturally in channel coding, where it corresponds to testing whether a state is the output of a given quantum channel or of a “useless” channel whose output is decoupled from the environment. Similarly, we establish an operational interpretation of Rényi conditional entropy by choosing an alternative hypothesis that consists of product states that are maximally mixed on one system. Specialized to classical probability distributions, our results also establish an operational interpretation of Rényi mutual information and Rényi conditional entropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.