Abstract
We revisit the gate elimination method, generalize it to prove correlation bounds of boolean circuits with Parity, and also derive deterministic #SAT algorithms for small linear-size circuits. In particular, we prove that, for boolean circuits of size \(3n - n^{0.51}\), the correlation with Parity is at most \(2^{-n^{\varOmega (1)}}\), and there is a #SAT algorithm running in time \(2^{n-n^{\varOmega (1)}}\); for circuit size 2.99n, the correlation with Parity is at most \(2^{-{\varOmega (n)}}\), and there is a #SAT algorithm running in time \(2^{n-{\varOmega (n)}}\). Similar correlation bounds and algorithms are also proved for circuits of size almost 2.5n over the full binary basis \(B_2\).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.