Abstract

Thermal deformation behavior of concrete mixtures from limestone and trap rock aggregates has been related to microcracking during cryogenic cooling. The study was aimed at comparing the suitability of the concretes for direct containment of liquefied natural gas (LNG). The results showed strong correlation between the thermal strain rate and the acoustic emission (AE) cumulative hits rate in the concretes. The closeness of the average thermal expansion coefficient of the trap rock mixture over the ambient to cryogenic temperature range to that of 9% Ni or carbon-steel, and its lower cumulative energy emission corroborates previous observations on its porosity, permeability and microstructural behavior. These likely make it more suitable for direct LNG containment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.