Abstract

Vacuum insulation panel (VIP), which is composed of an evacuated core material encapsulated in an envelope and supplemented with a desiccant, is a high performance thermal insulation material. In this paper, thermos-physical properties of chopped fiber, centrifugal-spinneret-blow (CSB) fiber, flame-spinneret-blow (FSB) fiber and hybrid (CSB: FSB=1:1) fiber as fillers of vacuum insulation panel are explored. The results show that the increase of pore size can improve thermal insulation property; fibers distribute in 2-D structure, which can reduce the heat conduction, leads to reduce the thermal conductivity. VIP with chopped fiber has the best thermal insulation, and thermal conductivity is 1.4 mW/m.K. Due to difference of core materials, thermal insulation characteristics of VIP can be divided into three distinct regions based on the internal pressure range, i.e., (I) ≥12000 Pa region, (II) 80-12000 Pa region, (III) ≤ 80 Pa region. It also finds that service life of VIP can be improved by the reducing the pore size of core materials. VIP with different core materials shows different degradation and the degradation rate of VIP with FSB core material is minimum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.