Abstract

The kinetics of the reduction of nickel, cobalt and copper ferrites was studied by the temperature programmed reduction method at different heating rates in hydrogen atmosphere. The activation energy values of the reduction processes were calculated using the non-isothermal isoconversional method according to the Kissinger-Akahira-Sunose equation and the dependence of apparent activation energy on the degree of conversion was determined. The carbon monoxide oxidation activities of all the three samples were determined at various temperatures up to 140 °C. An interesting correlation between the apparent activation energies for the reduction process was observed. The decreasing trend of activation energy on the ‘extent of conversion’ in all cases showed that the reduction is a multi-step process involving a reversible process followed by an irreversible step.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call