Abstract

Alkali-metal ions storage in carbon materials is of great interests for developing high-performance anodes for batteries. While Li, Na ions storage has been extensively investigated, systematic studies on the correlation between K ions storage and carbon microstructure have rarely been conducted. The large radius of K ions leaves a legitimate question whether the charge storage sites for Li and Na ions are also active for K ions. Herein, electrospun carbon nanofibers are employed as model materials to explore the K-ion storage behaviors in carbon with representative microstructures. By combining in-situ characterization and theoretical calculations, three active sites have been unveiled, including (i) uptake of K-ion by defect sites; (ii) K ions adsorption on isolated graphene sheets in partially disordered carbon; (iii) K ions intercalation between graphene layers for carbon with a high degree of graphitization. A similar reversible capacity around 280 mAh/g is obtained for various carbon structures while their voltage profiles are highly disparate. Remarkably, it is found that non-graphitic carbon presents better rate capability and less temperature-dependence due to the faster ion diffusion. These findings offer new insights into the design of advanced carbon anode materials with tunable properties for K-ion batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.