Abstract

To meet the global requirements of the industry, there is a need for innovative light weight, low cost, eco-friendly, high quality engineering materials with superior performance at a wide range of temperatures. Aluminum Matrix Composites (AMCs) are lightweight materials with isotropic properties, a suitable choice for modern industry. Low-cost aluminum alloys reinforced with minerals have found a special place in the automotive industry for the manufacture of automobile parts. Rutile particles improve the mechanical properties of the aluminum matrix, making it attractive for structural applications as well as providing greater wear resistance to the composite during sliding. In the present studies, a rutile mineral reinforced LM27 aluminum alloy composite was developed through a stir casting route with 6, 9 and 12 wt.% reinforcements. To study the effect of particle size on the mechanical and tribological properties of composite samples reinforced with fine-sized (50–75 μm) and coarse-sized (106–125 μm) rutile particles were prepared From the results of the experiment, it was found that the hardness, compressive strength and wear resistance increase with increasing rutile wt.% addition. The worn surface and re-groove of the new surface are restored during sliding with the help of oxide films. The analysis of the fractured surface clearly indicates with the help of energy dispersive X-ray spectroscopy (EDS) that with the increase in the volume fraction of the reinforced particles, the porosity increases, which could be the main reason for the compression failure of the composite material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.