Abstract

Metal borohydrides are intensively studied because of their potential applications as versatile hydrogen storage. The relation between the formation enthalpy and the Pauling electronegativity established for these materials [Phys. Rev. B 74, 045126 (2006)] led to the idea of developing mixed-cation compounds that may provide a route for tuning the thermodynamic stability of metal borohydrides. We report a systematic ab initio investigation of the single-metallic and bimetallic borohydrides, and via an examination of the Born effective charges we provide insight into the physical mechanism determining their stabilities. We show that the decreasing stability of metal borohydrides follows the increasing polarizing ability of the cationic bonding component, expressed as the square root of the cation's dynamical charge divided by its radius in coordinated anion polyhedra around the cation. The charge-to-size ratio thus provides a simple yet physically sound measure of the stabilities of metal borohydrides that can be obtained in relatively simple calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call