Abstract

In practice, two surfaces statically equivalent can be issued from two different manufacturing processes (grinding, belt finishing, honing, …) or obtained using different working process variables (abrasives grits size, contact pressure, …). The common tools and different norms used for industrial surface characterization (ISO 4288, ISO 12085, …) have the main limit of discriminating them through their process signatures. This Note introduces a multiscale decomposition method of the surface topography based on continuous wavelets transform. This approach allows the determination of the multi-scale transfer function of the morphological modification on the surface topography after a finishing process. This technique has been successfully applied to discriminate two surfaces obtained by the belt-finishing process. Moreover, it makes it possible to connect the surface topography modification to the physical and tribological mechanisms of the process (ploughing, cutting, …). To cite this article: S. Mezghani et al., C. R. Mecanique 336 (2008).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.