Abstract

ABSTRACTThe correlation between the structural and optical properties of Si nanocrystals embedded in SiO2 is the key factor to understand their emission mechanism. However, there is a great difficulty in imaging Si nanocrystals in SiO2 and measuring their size distribution because of the lack of contrast in electron microscopy. We have used here a new method for imaging Si nanocrystals by using high resolution electron microscopy in conjunction with conventional electron microscopy in dark field conditions. Regarding the optical properties, the band-gap energies and photoluminescence have been measured by direct and independent methods. The results have allowed experimental determination, for the first time in this material, of the experimental Stokes shift between absorption and emission as a function of crystallite size. The experimental band-gap versus size correlates well with the most accurate theoretical predictions. Moreover, the photoluminescence energy emission versus crystallite size shows a parallel behaviour to that of band-gap energy. Consequently, the experimental Stokes shift is independent of nanocrystal size and is found to be 0.26±0.03 eV. This value is almost twice the energy of the Si-O vibration (0.134 eV). These results suggest that the dominant emission of Si nanocrystals passivated with SiO2 is a fundamental transition spatially located at the Si-SiO2 interface and with the assistance of a local Si-O vibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.