Abstract
A solid-state membrane of a polymer/ionic liquid miscible mixture, poly(methyl methacrylate) (PMMA) and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) doped with lithium perchlorate (LiClO4), was prepared and characterized. Miscibility, segmental dynamics, glass transition and ionic conductivity were investigated. Based on the results from differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA), the system is fully miscible and of single phase. Broadening of the glass transition was observed when increasing the amount of ionic liquid, which can be attributed to mobility and flexibility differences between the polymer and ionic liquid. A large dynamical asymmetry and intrinsic mobility difference allow segmental and structural motion/relaxation over a wider temperature range by increasing the amount of ionic liquid. Saturation recovery spin–lattice relaxation time (T1) versus temperature obtained from 7Li nuclear magnetic resonance (NMR) showed high mobility of lithium ions, which was almost temperature independent. Lithium ion conductivity significantly increases with increasing ionic liquid amount. It is concluded that lithium ion mobility and its conduction is positively correlated to segmental dynamics of ion carriers in this model system, which is more noticeable in mixtures with higher amounts of the ionic liquid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.