Abstract

Fishery managers require an understanding of how climate influences recruitment if they are to separate the effects of fishing and climate on production. The southeastern Bering Sea offers opportunities to understand climate effects on recruitment because inter-annual oscillations in ice coverage set up warm or cold conditions for juvenile fish production. Depth-averaged temperature anomalies in the Bering Sea indicate the past nine years have included three warm (2003–2005), an average (2006), and five cold (2007–2011) years. We examined how these climatic states influenced the diet quality and condition (size, energy density and total energy) of young-of-the-year (YOY) pollock (Theragra chalcogramma) in fall. The implications of fall condition were further examined by relating condition prior to winter to the number of age-1 recruits-per-spawner the following summer (R/S). The percentage of lipid in pollock diets was threefold higher in cold years compared with warm years, but stomach fullness did not vary. Consequently, fish energy densities were 33% higher in cold years (P<0.001) than in warm years. In contrast, neither fish size (P=0.666), nor total energy (P=0.197) varied with climatic condition. However, total energy was significantly (P=0.007) and positively correlated with R/S (R2=0.736). We conclude that recruitment to age-1 in the southeastern Bering Sea is improved under environmental conditions that produce large, energy dense YOY pollock in fall.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call