Abstract
We examine the interplay between quantum charge fluctuations and magnetic ordering in multiferroic LuFe2O4 and show that this can couple spin and charge degrees of freedom in a LuFe2O4 bilayer below the Neel temperature TN. Our analysis supports the idea that the double exchange mechanism normally used in metallic systems can be applied to charge-ordered insulators. This causes ferrimagnetic spin order to reduce the transfer integrals between Fe2+ and Fe3+ in LuFe2O4, decreasing charge fluctuations and increasing the polarization in this system below TN. This work thus provides a more detailed understanding of the mechanism for spin-charge coupling in LuFe2O4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.