Abstract

In this study, the effects of tool rotational speed, tool traverse speed, and Zn content on the grain size and hardness of the friction-stir-welded (FSWed) Cu–Zn alloy joints were investigated. The microstructures of the joints were examined using optical microscope (OM) and scanning transmission electron microscope (STEM). Vickers hardness test was conducted to evaluate the hardness of the joints. In addition, the relationships between the process parameters, grain size, and hardness of the joints were established. The results show that the developed relationships predict the grain size and hardness of the joints accurately. The Zn content of the alloys is the most effective parameter on the grain size and hardness, where the tool traverse speed has the minimum effect. The relationship between the hardness and grain size of the joints has a deviation from the Hall–Petch equation due to formation of high dislocation density inside the grains. At higher Zn amounts, the dislocation tangles with high density form instead of dislocation cells, and hence, lower conformity with the Hall–Petch relationship is observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.