Abstract

A combined numerical model of thermal field and the primary dendrite arm spacing (PDAS) was proposed to correlate the process parameters and PDAS in laser welding of Cu and Al. The solidification parameters simulated by the finite volume method with commercial software ANASYS FLUENT were applied in the PDAS model to predict the dendrite arm spacing of fusion zone. Dendrite was also examined by the metallographic method to validate the model. Results indicate that the calculated PDAS agrees with metallographic measurements reasonably, especially the Hunt model. PDAS increases apparently with increasing laser power while decreases slightly with increasing welding speed. Increasing laser power increases the secondary dendrite and increasing welding speed increases the microporosity in dendrite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call