Abstract
In order to precisely evaluate the contribution of each bonding constituent to the pitting corrosion resistance of transient liquid phase (TLP) bonded 2205 duplex stainless steel (DSS), we have undertaken potentiodynamic polarization (PDP) and microstructural analytic measurements all across the TLP bonded area. The PDP results show that the pitting corrosion resistance of TLP bonded specimens is significantly affected by the presence of certain bonding constituents across the TLP bonded area. Electron microscopy analysis indicates that the formation of complex (Fe,Ni,Cr,Mo)3P phosphide in the bonding zone (BZ) before the completion of isothermal solidification (IS) as well as the formation of P-rich sigma phase in the diffusion-affected zone (DAZ) following the completion of the IS provides the most preferential sites for the occurrence of pitting corrosion. The PDP results also confirm that the pitting potentials (Epit) of the TLP bonded specimen before and after IS completion are, respectively, closer to the Epit of the BZ and the Epit of the DAZ rather than to those of other TLP BZs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.