Abstract
The correlation between the local structure and the propensity for structural rearrangements has been widely investigated in glass forming liquids and glasses. In this paper, we use the excess two-body entropy S2 and tetrahedrality ntet as the per-particle local structural order parameters to explore such correlations in a three-dimensional model glass subjected to cyclic shear deformation. We first show that for both liquid configurations and the corresponding inherent structures, local ordering increases upon lowering temperature, signaled by a decrease in the two-body entropy and an increase in tetrahedrality. When the inherent structures, or glasses, are periodically sheared athermally, they eventually reach absorbing states for small shear amplitudes, which do not change from one cycle to the next. Large strain amplitudes result in the formation of shear bands, within which particle motion is diffusive. We show that in the steady state, there is a clear difference in the local structural environment of particles that will be part of plastic rearrangements during the next shear cycle and that of particles that are immobile. In particular, particles with higher S2 and lower ntet are more likely to go through rearrangements irrespective of the average energies of the configurations and strain amplitude. For high shear, we find very distinctive local order outside the mobile shear band region, where almost 30% of the particles are involved in icosahedral clusters, contrasting strongly with the fraction of <5% found inside the shear band.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.