Abstract
We have characterized amorphous In2O3:H (H : ∼4 at.%) transparent conducting films by Rutherford backscattering spectrometry (RBS), thermal desorption spectroscopy, spectroscopic ellipsometry, and Hall measurements. The amorphous In2O3:H films have been fabricated at room temperature by sputtering of an In2O3 ceramic target under Ar, O2, and H2O vapor with variation of a flow ratio r(O2) = O2/(O2+Ar). We observe (i) signals originating from Ar in RBS spectra for all the films and (ii) desorption of H2O and Ar gases during post thermal annealing of the films. Furthermore, O2 desorption together with H2O and Ar is observed for the films grown at r(O2) > 0.375%, whereas In desorption together with H2O and Ar is observed for the films grown at r(O2) < 0.375%. These results suggest that the films have void and/or multi-vacancy rich structures inside the amorphous network, and the variety of atoms, such as Ar, H2O, and weakly bonded O and In, is present in the void structures for the films grown at O2-rich and O2-poor conditions, respectively. Corresponding to the structural changes, optical and electrical properties also change at r(O2) = 0.375%. For the films grown at r(O2) < 0.375%, we observe a broad absorption in the visible wavelengths that cannot be explained by free carrier absorption. In this film, the carrier mobility reduces rapidly with increasing carrier density. Analysis of spectroscopic ellipsometry and Hall measurements reveals that a large decrease in mobility is due to a large increase in carrier effective mass, in addition to the effect of ionized impurity scattering. In this article, we discuss the optical and transport properties with the variation of oxygen stoichiometry and microscopic structures in the amorphous In2O3:H films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.