Abstract

In this work, ZnO nanoparticles (NPs) are synthesized using avocado seed extract and annealed at different annealing temperatures from 400 to 800 °C. The morphology of the nanoparticles changes from poly shapes at 400 °C to spherical ones at 800 °C, and particle sizes increase from ∼42 nm to ∼128 nm. The Ag/ZnO@400/FTO memory device exhibits stable resistive switching over 100 cycles and a resistance window of approximately 150. Also, the performance characteristics of ZnO@600 and ZnO@800-based devices are degraded gradually over operating cycles. The concentration of oxygen interstitials (Oi) in ZnO nanoparticles, which may originate from organic residues, decreases as the annealing temperature increases. These Oi ions reduced the energy barrier at the interfaces, facilitating electron transport under an external electric field. This study has demonstrated the close correlation between resistive switching characteristics and organic residuals in green synthesized nanoparticles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.