Abstract

Abstract We provide a mathematical description, based on d-wave Eliashberg theory, of the strong correlation between the experimentally observed softening of Raman modes associated with in-plane oxygen motions and the corresponding superconducting critical temperature T c , as a function of oxygen doping x, in YBa2Cu3O x . The theoretical model provides a direct link between physical trends of soft optical Ag (in-plane) oxygen modes, the level of oxygen doping x, and the superconducting T c . Different regimes observed in the trend of T c vs doping can be related to corresponding regimes of optical phonon softening in the Raman spectra. These results provide further evidence related to the physical origin of high-temperature superconductivity in rare-earth cuprate oxides and to the significant role of electron–phonon coupling therein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.