Abstract

In this paper, the hydrogen and hydrogen-methane mixed plasma have been generated inside a 33 cm diameter quartz bell jar with a low power (9 KW) and lower frequency 915 MHz microwave plasma chemical vapor deposition system. The reactor is being used for growing polycrystalline diamond (PCD) over large area (100 mm). The generated plasma is diagnosed by in situ optical emission spectroscopy method with wave length ranging from 200 to 900 nm. The effects of microwave power, chamber pressure and gas concentration on plasma characteristics have been studied in this work. Within the optical range, Balmer H α , H β , C2swan band and CH lines have been detected at the wavelengths of 655.95, 485.7, 515.82 and 430.17 nm, respectively. It has been observed that for hydrogen plasma, the amount of transition from hydrogen atom inner shell 3 to 2 (H α ) is almost constant with increasing microwave (MW) power (from 2000 to 2800 W) and pressure (from 15 to 30 Torr) initially, after that it increases with further increase of MW power and pressure, whereas, the transition from 4 to 2 (H β ) is slowly increased with increasing MW power and pressure. For hydrogen-methane plasma, intensities of C2 swan band, i.e., the transitions from D3π g to A3π μ energy levels, are also increased with the increasing microwave power and reactor pressure. It has been observed that the radicals present in the plasma are affected by variation of different reactor parameters like pressure, MW power, CH4 concentration, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call