Abstract
Here, we report an optical absorption redshift map for GeTe-Sb2Te3 pseudo-binary alloys. We found that, with phase change from amorphous to crystalline, the observed redshift increases with Ge concentration along pseudo-line of compositions, which directly reflects the enhanced electron delocalization/resonant bonding and increased carrier concentrations in the respective crystal compounds. The measured valence band maximum shift towards the Fermi energy from amorphous to crystalline phase supports the observed similar trend in redshift and carrier density. We show that the correlation between optical redshift and carrier density, attributed to the resonant bonding, can be rationalized by calculating the valence electron concentration, the ionicity, and hybridization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.