Abstract

BackgroundThe metastatic disease rather than the primary tumor itself is responsible for death in most solid tumors, including breast cancer. The role of matrix metalloproteinases (MMPs), tissue inhibitors of MMPs (TIMPs) and Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) in the metastatic process has previously been established. However, in all published studies only a limited number of MMPs/MMP inhibitors was analyzed in a limited number of cell lines. Here, we propose a more comprehensive approach by analyzing the expression levels of several MMPs (MMP-2, MMP-9 and MMP-14) and MMP inhibitors (TIMP-1, TIMP-2 and RECK) in different models (five human breast cancer cell lines, 72 primary breast tumors and 30 adjacent normal tissues).MethodsWe analyzed the expression levels of MMP-2, MMP-9 and MMP-14 and their inhibitors (TIMP-1, TIMP-2 and RECK) by quantitative RT-PCR (qRT-PCR) in five human breast cancer cell lines presenting increased invasiveness and metastatic potential, 72 primary breast tumors and 30 adjacent normal tissues. Moreover, the role of cell-extracellular matrix elements interactions in the regulation of expression and activity of MMPs and their inhibitors was analyzed by culturing these cell lines on plastic or on artificial ECM (Matrigel).ResultsThe results demonstrated that MMPs mRNA expression levels displayed a positive and statistically significant correlation with the transcriptional expression levels of their inhibitors both in the cell line models and in the tumor tissue samples. Furthermore, the expression of all MMP inhibitors was modulated by cell-Matrigel contact only in highly invasive and metastatic cell lines. The enzyme/inhibitor balance at the transcriptional level significantly favors the enzyme which is more evident in tumor than in adjacent non-tumor tissue samples.ConclusionOur results suggest that the expression of MMPs and their inhibitors, at least at the transcriptional level, might be regulated by common factors and signaling pathways. Therefore, the multi-factorial analysis of these molecules could provide new and independent prognostic information contributing to the determination of more adequate therapy strategies for each patient.

Highlights

  • The metastatic disease rather than the primary tumor itself is responsible for death in most solid tumors, including breast cancer

  • Results mRNA expression and activity of matrix metalloproteinases (MMP) and their inhibitors in human breast cancer cell lines In order to determine whether MMPs and their inhibitors are responsible for the different invasive and metastatic capacities displayed by a panel of five human breast cancer cell lines (Table 1), we analyzed the expression levels of MMPs, tissue inhibitors of matrix metalloproteinases (TIMP) and reversioninducing cysteine-rich protein with Kazal motifs (RECK) by quantitative RT-PCR (qRT-PCR)

  • The results indicated that the ratios between MMP-2/RECK, MMP-9/RECK and MMP-14/RECK were significantly higher in the tumor than in adjacent non-tumor tissue samples (p = 0.0024, p = 0.0001 and p < 0.0001, respectively) (Figure 4)

Read more

Summary

Introduction

The metastatic disease rather than the primary tumor itself is responsible for death in most solid tumors, including breast cancer. We propose a more comprehensive approach by analyzing the expression levels of several MMPs (MMP-2, MMP-9 and MMP-14) and MMP inhibitors (TIMP-1, TIMP-2 and RECK) in different models (five human breast cancer cell lines, 72 primary breast tumors and 30 adjacent normal tissues). Each ECM element is cleaved by a specific MMP or MMP group [7] The activity of these proteases is tightly regulated by specific inhibitors, known as tissue inhibitors of MMPs (TIMPs) [7,8]. Consistent with their role in tumor progression, high levels of a number of MMPs have been shown to correlate with poor prognosis in human cancers [9,10,11]. TIMPs expression profile could be the result of its action as a multifunctional molecule [8]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.