Abstract

X-ray diffraction and optical microscopy were used to characterize the crystallographic texture and the grain microstructure in cold-rolled Fe–23.2Mn–0.57C alloy. The development of texture and microstructure with increasing strain was systematically analyzed. From 10 to 85% rolling reduction the observed microstructure changes can be characterized by four distinctly different features: twin-matrix lamellae, alignment of twins with rolling plane, herring bone structure and macro shear bands. The effect of microstructural heterogeneity on texture was addressed. The observed change of the Cu texture component {112} with increasing strain was attributed to the competition of homogeneous dislocation slip and deformation twinning. The shift of the Brass component towards the Goss orientation at higher reduction levels (> 60%) corresponds to the appearance of a large amount of the shear bands and the formation of the // ND fiber texture – to the alignment of twin-matrix lamellae with rolling plane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.