Abstract

AbstractNonlocal diffusion models involve integral equations that account for nonlocal interactions and do not explicitly employ differential operators in the space variables. Due to the nonlocality they might look different from classical partial differential equation (PDE) models, but their local limit reduces to partial differential equations. The effect of mesh element anisotropy mesh refinement and kernel functions on the conditioning of the stiffness matrix for a nonlocal diffusion model on 2D geometric domains is considered, and the results compared with those obtained from typical local PDE models. Numerical experiments show that the condition number is bounded by (where c is a constant) for an integrable kernel function, and is not affected by the choice of the basis function. In contrast to local PDE models, mesh anisotropy and refinement affect the condition number very little.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.