Abstract

The mechanical properties and the hierarchical filler structures were characterized on a series silica-filled silicone rubber with a filler fraction (ΦSi) varied from 0.05 phr to 80 phr (parts per hundred rubber). Uniaxial elongation measurement suggests that there is a percolation threshold between 10 and 30 phr. Moreover, an optimum ΦSi range from 40 phr to 50 phr is found, in which the best mechanical performances of reinforcement are shown. The microscopic structures were crosschecked by small-angle neutron scattering (SANS) and scanning electron microscopy (SEM). The effects of the ΦSi and the fabrication process on the morphology of samples are unveiled. The correlation length among aggregates extracted from SANS data monotonically decrease from 237.0 nm to 136.5 nm with increasing the ΦSi from 30 phr to 80 phr. The average radius of gyration of aggregates 〈Rg,agg〉 fitted with the Beaucage model monotonically decrease from 49.2 nm to 37.5 nm with increasing ΦSi from 10 phr to 80 phr. Providing a 10 nm thickness bound rubber as bridge, samples with optimum ΦSi yield a morphology that the radii of aggregates and the gap filled with polymer matrix in between are equivalent as both around 60 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.