Abstract
This study aimed to evaluate the effect of the synthesis parameters and the incorporation of natural polyphenolic extract within hydrogel networks on the mechanical and morphological properties of physically cross-linked xanthan gum/poly(vinyl alcohol) (XG/PVA) composite hydrogels prepared by multiple cryo-structuration steps. In this context, the toughness, compressive strength, and viscoelasticity of polyphenol-loaded XG/PVA composite hydrogels in comparison with those of the neat polymer networks were investigated by uniaxial compression tests and steady and oscillatory measurements under small deformation conditions. The swelling behavior, the contact angle values, and the morphological features revealed by SEM and AFM analyses were well correlated with the uniaxial compression and rheological results. The compressive tests revealed an enhancement of the network rigidity by increasing the number of cryogenic cycles. On the other hand, tough and flexible polyphenol-loaded composite films were obtained for a weight ratio between XG and PVA of 1:1 and 10 v/v% polyphenol. The gel behavior was confirmed for all composite hydrogels, as the elastic modulus (G') was significantly greater than the viscous modulus (G″) for the entire frequency range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.