Abstract

Glioblastoma (GBM) is an aggressive form of brain tumor characterized by limited treatment options and a bleak prognosis. Although the role of Like-Sm 1 (LSM1), a component of the mRNA splicing machinery, has been studied in various cancers, its significance in GBM remains unclear. The purpose of this research was to investigate the expression of LSM1 and its role in driving GBM progression. We analyzed gene expression data obtained from TCGA and GTEx databases to compare the levels of LSM1 expression between GBM and normal brain tissues. To assess the impact of LSM1, we conducted experiments using U87 GBM cells, wherein we manipulated LSM1 expression through overexpression and knockdown techniques. These experiments allowed us to evaluate cellular behaviors such as proliferation and invasion. Additionally, we explored the correlation between LSM1 expression and immune cell infiltration in GBM. Our analysis of TCGA and GTEx datasets revealed a significant upregulation of LSM1 expression in GBM compared to normal brain tissues. In our in vitro experiments using U87 cells, we observed that LSM1 overexpression promoted cell proliferation and invasion, while LSM1 knockdown exerted the opposite effects. Moreover, we discovered correlations between LSM1 expression and immune cell infiltration in GBM, specifically involving TFH cells, CD56bright cells, macrophages, and Th2 cells. The findings of this study demonstrate the upregulation of LSM1 in GBM and its contribution to tumor progression by enhancing cell proliferation, invasion, and influencing immune cell infiltration. Our research sheds light on the potential oncogenic role of LSM1 in GBM and suggests its viability as a therapeutic target for this aggressive brain tumor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call