Abstract
Activity of the bone/liver/kidney isozyme of alkaline phosphatase (AP) is known to be critical for mineralization in developing bone, although its role is unclear. The work now reported explores changes in the activity of this Zn2+-containing enzyme that occur during Ca2+ accumulation by matrix vesicles (MV). A marked loss (up to 65-70%) in AP activity was found to accompany Ca2+ accumulation by MV. These two events were highly correlated, both temporally and quantitatively. Investigation into possible causes revealed that the decline in AP activity during Ca2+ uptake was not due to action of proteases but rather resulted from interaction with the developing mineral phase, loss of metal ions (Zn2+ and Mg2+) from the active site of the enzyme, and concomitant irreversible denaturation of the enzyme. Protease inhibitors did not protect AP from loss of activity during mineralization; in contrast, protease treatments, which progressively destroyed the ability of MV to accumulate Ca2+ actually reduced loss of AP activity. These findings clearly demonstrate that AP is present at the site of MV mineralization and that its catalytic activity is profoundly reduced by the mineralization process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.