Abstract
Although nanoscale spatial heterogeneity of metallic glasses has been demonstrated by extensive experimental and theoretical investigations, the nature of spatial heterogeneity remains poorly known owing to the absence of a structural depiction of the inhomogeneity from experimental insight. Here we report the experimental characterization of the spatial heterogeneity of a metallic glass by utilizing state-of-the-art angstrom-beam electron diffraction and scanning transmission electron microscopy. The subnanoscale electron diffraction reveals that the nanoscale spatial heterogeneity and corresponding density fluctuation have a close correlation with the local structure variation from icosahedronlike to tetragonal crystal-like order. The structural insights of spatial heterogeneity have important implications in understanding the properties and dynamics of metallic glasses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.