Abstract

The reduction of ribonucleotides to deoxyribonucleotides, a rate-limiting step in DNA synthesis, is catalyzed by ribonucleotide reductase. This enzyme is composed of two components, M1 and M2. Recent work has shown that inhibition of ribonucleotide reductase by the antitumor drug hydroxyurea leads to a destabilized iron centre in protein M2. We have examined the relationship between the levels of ferritin, the iron storage protein, and the iron-containing M2 component of ribonucleotide reductase. These studies were carried out with hydroxyurea-sensitive, -resistant, and -revertant cell lines. Hydroxyurea-resistant mouse L cells contained M2 gene amplification and elevated levels of enzyme activity, M2 message, and total cellular M2 protein concentration. Hydroxyurea-revertant cells exhibited a wild-type M2 gene copy number, and approximately wild-type levels of enzyme activity, M2 message, and M2 protein concentration. In addition, we observed that the hydroxyurea-resistant cells possessed elevated levels of L-chain ferritin message and total cellular H-chain ferritin protein when compared to wild-type cells. In contrast, the revertant cell population contained approximately wild-type levels of ferritin mRNA and protein. In keeping with these observations, obtained with mouse L cells, was the finding that hydroxyurea-resistant Chinese hamster ovary cells with increased ribonucleotide reductase activity exhibited elevated expression of both ferritin and M2 genes, which declined in drug-sensitive revertant hamster cell lines with decreased levels of ribonucleotide reductase activity.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call