Abstract

Electromagnetic components mostly incorporate soft magnetic materials used as flux multipliers. Hence, any reduction in iron loss of the magnetic core yields in saving energy. Among the techniques, the local laser treatment is a non-contact method applied for 180° domain refinement (Patri et al. [1]). The present study reassessed the impact of laser treatment on the magnetic properties of grain oriented silicon steels. Various laser pulse widths are used: an ultra-short pulse laser mainly adapted to the ablation process and a long and short pulse durations used for both irradiation and scribing processes [2]. The power loss is measured with a Single Sheet Tester (150 × 150 mm2). Each type of treatment resulted in a power loss reduction of 15–35% at peak induction 1.5 T and frequency 50 Hz. However, only the scribing and the ablation improved also the apparent permeability. In this work, the laser energy parameters are used to estimate the laser impact on the heat affected zone, the groove depth, the induced thermal stress, and on the internal properties of a magnetic behavioral model: static permeability and dynamic magnetization property [3].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.