Abstract

Increased levels of lactate are observed by (1)H magnetic resonance spectroscopy ((1)H-MRS) in rat brains after stroke. However, it is not known whether the changes in lactate levels are predictive of the degree of neuronal damage. To investigate the correlation between changes in lactate and lipid levels measured by (1)H-MRS and neuronal cell damage in the rat brain. A middle cerebral artery occlusion (MCAO) model was used to evaluate focal ischemia in rats (n=36). After MCAO for 90 min T2-weighted images (T2WIs), diffusion-weighted images (DWIs), and (1)H-MRS data were obtained from brains immediately, 6 hours, 9 hours, 12 hours, 18 hours, 24 hours, 3 days, and 7 days after reperfusion. Infarct volumes were measured in T2WIs obtained 4 weeks after reperfusion. The degree of neuronal damage was measured by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining in three rats from each group at the same time as brain images were collected. Creatine (Cr)-normalized lactate + lipid levels ([Lac+Lip]/Cr) were negatively correlated with Cr-normalized N-acetyl-L-aspartate levels (NAA/Cr) and positively correlated with TUNEL-positive cell numbers up to 24 hours after reperfusion. (Lac+Lip)/Cr at 6 hours and 9 hours was significantly correlated with NAA/Cr at 7 days, but there was no significant correlation between (Lac+Lip)/Cr during the first 24 hours and infarct volume at 4 weeks. Up to 24 hours after reperfusion, (Lac+Lip)/Cr was strongly negatively correlated with NAA/Cr, and was a good predictor of neuronal damage at 7 days; however, it was not predictive of final infarct volume at 4 weeks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call