Abstract

A mathematical method has been developed to analyze influence functions that are used in a computer-controlled polishing process. The influence function itself is usually generated by some kind of calibration where the exact procedure is dependent on the process used. The method is able to determine asymmetries in an influence function. Application of this method yields a value that may be used to judge the quality of an influence function. That quality is also an indicator of the variance of the evolving surface error profile, since a close relationship between it and the polishing process exists. On the basis of an ideal, theoretical process, a model to handle and quantify the result of a real polishing process is described. Practical application of this model demonstrates the effect of influence-function quality on the polishing result. Based on this model, the predictability of the polishing result is evaluated. This initiative to judge influence functions by their quality is an important contribution to the development of computer-controlled polishing. Due to improved process reliability, the reject rate will decrease, and the result will be more economic manufacture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.