Abstract

Numerous biochemical and structural studies have shown that the conformation of the estrogen receptor alpha (ERalpha) can be influenced by ligand binding. In turn, the conformational state of ERalpha affects the ability of the receptor to interact with a wide variety of protein accessory factors. To globally investigate ligand-based cofactor recruitment activities of ERalpha, we have applied a flow cytometric multiplexed binding assay to determine the simultaneous binding of ERalpha to over 50 different peptides derived from both known cofactor proteins and random peptide phage display. Using over 400 ERalpha-binding compounds, we have observed that the multiplexed in vitro peptide-binding profiles are distinct for a number of compounds and that these profiles can predict the effect that ERalpha ligands have on various cellular activities. These cell-based activities include transcriptional regulation at an estrogen response element, MCF-7 cell proliferation, and Ishikawa endometrial cell stimulation. The majority of the compound-induced diversity in the peptide profiling assay is provided by the unique phage display peptides. Importantly, some of these peptides show a sequence relationship with the corepressor motif, suggesting that peptides identified via phage display might represent natural binding partners of ERalpha. These in vitro:cellular correlations may in part explain tissue-specific activities of ERalpha-modulating compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.