Abstract

To investigate the correlation between in vitro and in vivo immunomodulation potential of the probiotic strain and its ability to prevent experimental colitis in mice. In vitro immunomodulation was assessed by measuring interleukin (IL)-12p70, IL-10, tumor necrosis factor alpha (TNFalpha) and interferon gamma (IFNgamma) release by human peripheral blood mononuclear cells (PBMCs) after 24 h stimulation with 13 live bacterial strains. A murine model of acute TNBS-colitis was next used to evaluate the prophylactic protective capacity of the same set of strains. A strain-specific in vivo protection was observed. The strains displaying an in vitro potential to induce higher levels of the anti-inflammatory cytokine IL-10 and lower levels of the inflammatory cytokine IL-12, offered the best protection in the in vivo colitis model. In contrast, strains leading to a low IL-10/IL-12 cytokine ratio could not significantly attenuate colitis symptoms. These results show that we could predict the in vivo protective capacity of the studied lactic acid bacteria (LAB) based on the cytokine profile we established in vitro. The PBMC-based assay we used may thus serve as a useful primary indicator to narrow down the number of candidate strains to be tested in murine models for their anti-inflammatory potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call